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Stochastic Quantization Approach for the
Ising Model
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The Ising model is studied in the fermionic formulation of the stochastic
quantization. An exact stochastic equation is given for D = 2 and 3 and in a
Hartree approximation a method is developed for treating the two»point
correlation functions.

1. INTRODUCTION

The stochastic quantization method of Parisi and Wu'” provides a novel
and interesting connection between Euclidean quantum field theory and classi»
cal statistical mechanics. The application of this formalism to theories con
taining fermionic fields has been treated using Grassmann variables developed
by Berezin.?)

The fact is that the Ising model, one of the few nontrivial integrable
models of statistical physics, can also be interpreted in terms of Grassmann
variables.”’ The most important aspect of this approach is that all Grassmann
correlation functions may be easily calculated in two dimensions, a result
which is impracticable with spin variables. We have at our disposition two
types of variables: spin variables, which have a simple physical interpretation,
but are very difficult to work with mathematically, and Grassmann variables,
which do not have as a simple physical interpretation, but are easily to use.

Here we apply the stochastic quantization method to this model. In
Section 2 we briefly review the fermionic formalism of the stochastic quanti>
zation and the two>dimensional Ising model explained in Grassmann vari
ables. Then we treat and calculate all the correlation functions of this model
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in Section 3 for two dimensions, and in Section 4 for three dimensions in a
kind of Hartree approximation.

2. BASIC FORMALISM
2.1. Stochastic Quantization

The basic idea of stochastic quantization is to consider the Euclidean
path integral measure as a stationary distribution of a stochastic process in
an extra variable, the fictitious time ¢ The diffusion toward equilibrium in
(d + 1) dimensions is described for the fermionic theories through two
Langevin equations:

Na(x, 1) _ _SSAV.

]
ot SVo[x, 1] Bl )
N, ) _ 3SAV ] | =
o ol 4 + Oa(x, 1) (1)

where SHV, V] stands for the action, which depends on the fermionic fields
 and V.

Working in Euclidean space, fields have to be treated as independent
Grassmann variables. Then stochastic expectation values of the Gaussian
noise are defined by

0 = (8) =0
<9a(x, t)éf,(x’, ) = ZSaBSD(x — x’)S(t —t) 2)

and similarly for higher m>point functions, taking into account the anticommu»
tating nature of the noise fields 6(x, 7) and O(x, 7).

The first important characteristic of the stochastic quantization is that
we can start from the “exact” equation of motion itself, while the conventional
quantization procedures, canonical quantization and Feynmann path integral
methods, cannot be applied to any dynamical system which has no Hamilto
nian or Lagrangian.

2.2. Two-Dimensional Ising Model

It is well known'® that for a large number of statistical mechanical
systems which have a graphical interpretation, the partition function has a
representation in terms of anticommutative variables. The two>dimensional
Ising model has such an interpretation where the sum is over closed nonover»
lapping but intersecting polygonal curves. This is obtained by drawing curves
separating the region of up spin from down spin.
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After calculation we obtain in the momentum space'*”

zZ= cosh(BJ)MJ Dm, DN, exp(SHN, M) (3)

which is expressed by means of 4>component Grassmann variables 1), and
M-, with the definition

(n‘;)t—p
_| M)y
L QR
My
where the four components are introduced at each site of the reciprocal lattice,
and can be graphically represented by
B Tp T

MM ™M, MH% D,

The functional action is given by

T 2
_ dp_
Sdn, Nl = J_n (2m)? n~D—,My 4)
where
0 o 1 1
I e R
Doyr=l =1 1 0 B ©)
1 -1 —p* 0
with

o =1+ Kexp(ipx)
B =1+ Kexp(—ipx)
K = tanh(BJ)

A straightforward calculation permits us to reobtain the famous Onsager
result for the free energy.

3. TWO-DIMENSIONAL ISING MODEL IN STOCHASTIC
QUANTIZATION

From the preceding action we can write the following Langevin
equations:
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6 i7l 1 ij j i
jéil_l = _5 Dlj—p,[?n[/?(l) + 9117(1)
on' (1 L ij ti
_T]BZ& = = M5(OD— + 05,0 ©
with
O3B, (1 ))o = 28"8*(p — p")3(t — 1) @

The D matrix can be diagonalized as

ik 0 0 0

Dl = 0 —ih O 0
N | 0 in 0
0 0 0 —iN
where
}\‘ =

\/2 + (1 + K*) + K(cos(py) + cos( Dy) — \/4 + K(cos( px) + cos(py))2 + 4K* — 8
A=

\/2 + (1 + K» + K(cos(py) + cos(py)) + \/4 + K(cos(py) + cos(p,))® + 4K* — 8

But in the  — % limit, we can easily see that we do not recover the usual
Green functions. This problem is well known in stochastic quantization.'”
Basically this evidences the fact that there exists no classical analogue of
fermion fields. The consequence here is the appearance of operators which
are not positive definite. The idea to solve this problem is to choose a
bosonized version of the two Langevin equations by the introduction of
kernels.!”

In view to obtaining more simplified Langevin equations, we take the
following kernels:

K, = (D)),

Then we have

™ _ 1 ;
i ORI A0
a ti’ t 1 ti ti
A = + 0,0 (8)

and after a simple matrix manipulation
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(0,0%,) = Hm(BL(1)0”,(1)e = (D)=, )
1—%0
In position space we then obtain
i = [ : ,
mim? = J eyt (P D explip(r = 1) (10)
where
(Dil)*p,p =
B—Br  B+pr-oppr 2+ opr -2+ ap
B —B*+oppr B+ pr 2~ arpe -2 —ap
2 —a*f -2+ af —o + o* —o — o* — ao*f
2 — a*p* 2 —oaf* —o —o* + ao*B* o — o

We can give the 12 possible correlation functions founded by Samuel® in
another context, for instance, we have

() = : L exptiptr = [ & “Zet_D““*B*)
() = : L exptiptr = [ B Bzet_D“*BB*)
() = : L2 exptiptr = ) %B—)
) = : L2 exptiptr = ) %B—) (n

with

det D = (1 + K»?* — 2K(1 — K?*)(cos(px) + cos(py))

4. A KIND OF HARTREE APPROXIMATION FOR THE THREE-
DIMENSIONAL ISING MODEL IN STOCHASTIC
QUANTIZATION

Here we concentrate on the three>dimensional Ising model. Its dual is
the Z, three>dimensional gauge model with similar variables assigned to links
and interacting on elementary plaquettes. The fermionization of this theory
was also realized by Samuel® and Itzykson and Drouffe,® who generalized
the two>dimensional formalism in the following partition function:
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= cosh(BJ)”VJ H dnsdnldnZdn2dnian!? exp(S) (12)

where
S = Splaquettes T Scorners + Svertex (13)
with
Splaqueltes =K Z Z (i)zj/cn;{v,'jn{‘v-*—u,'jn;—fv,'kn/lé-%—u,'k (14)
=

Scorners = Z Z nH—u,]n v+u,] + nY+M:an+M1k + nv+u,]nv+u,] + nfv-%—u,'jnfv-%—u,'j}

(15)
Svertex = Z ;nfv-%-u,'jn;—luij (16)

with
| for i#FjFk

1
Uiy = 5 (e; + €j)

vip = (ei — ¢)

N =

where e; is the unitary vector in the i direction.

Since the plaquette terms are quartic, the partition function is no longer
integrable and we need to develop approximation schemes. First we attend
to the quadratic terms, whose contribution to the partition function is Gaussian.

4.1. The Quadratic Terms

These terms can be easily rewritten in the form

Seorners T Svertex = (27_[:) Zn” 14 11—17«171]57 (17)

where n", is the transpose of M, given by
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/ nt},
1

Ny
N b
n[l7 = n[%
+3
N-p
n
The M matrix is given by \
/ 0 -2  —af -1 —a¥ -1
2 0 1 —as 1 —az
y 1| af —1 0 -2  —a¥ -1
MU—J,? = _
SN a3 2 0 1 a
a*, —1 a¥ -1 0 -2
1 ar 1 ag 2 0

with a; = gu exp(Zipu\,;), where there is no summation on the indices.

In first approximation let us suppress the quartic terms (that is, let us
take K = 0). The Langevin equations associated with the preceding action
is then

oz i ’

_rlédl_l = =ML, np(0) + 9117(1)

0 tyil il ji /

Maz = —ni(Mi_, + 0(1) (18)

The M matrix is antisymmetric and its eigenvalues are pure imaginary
complex conjugate numbers. Then in the ¢ — o limit, we recover the same
problem as in two dimensions. As before, this difficulty is avoided by the
introduction of a kernel:

ony(?) ) )
o = —Mp(H) + 6y(2)

) . ,
or = —1,(1) + 0,(1)

with now
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OL(N0L,(1 )0 = 2(M )L,y 8(1 — 1)

where

M=
0 -2 E; (1 — afay) —E, (1 + afas)
2 0 —(1 — a;a¥) E% —(1 + aja¥) —E%

1 —E; 1 — aya¥ 0 -2 E 1 —afas
2p| — (1 —afay) —E¥} 2 0 —(1 — aya¥) EY
E2 1 + 411413|< 7E1 1 - 412413|< 0 -2
—(1 + afa;) E%x —(1 —a¥a;) —E¥ 2 0
and

Ey=2a1 —ar + a3
E=a —2a, + a3
Es=a —a + 2a3
D = afE, — a3F, + afE; — 4

4.2. The Quartic Term

In momentum space the action has a more complicated form. We can
write it as
dp. d’p> d’py

aquettes = K
Spiague Qny an) 2n)

X AU OV (DU (D7, =y p3(1) expli(Unapy + Viaps + eap3)]

(20)
+ U OV (DO, —pytp5(D) expli(Uazpr + Vazps + e3p3)]

(21)
+ U OOV (DO, —py4p3(D) expli(Usipr + Vaipa + eps)l}

(22)

Introducing the vector n}} of the last section, we obtain

3 3 3
. d’p1 d’p> dps
Splaqueltes =K

@2n)’ 2n)* 2n)’
X L (DM ONZ 5 (DM 1t ps(D) (23)
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expli(Uizp1 + Vizpz + eaps)]
+ N (M (INZ (DM =paeps(D)

expli(Uizp1 + Vizpz + eaps)]
+ N2 (Mo (ON s (DM ot (1)

expli(Unzp1 + Vizpz + ex2p3)]}

This expression can be written in a more compact form as

d’p1 d’pr d’ps
S aquettes = K
pa Jam%mr@m3

k41, o2k 20—1
X ; NS (DM (ON=ys (l)rl171—172+173(1)
ke (f733,31)

expli(Ukipt + Viap2 + el p3)]

where

Finally we obtain for the Langevin equations

o d’p, dp> -

=M, — K T'lm(l)rl 17z(l)n17—171+17z(1)

ot 2n)* (2m)’
expli(Unnp + Viap1 + expo)]
+ T'ltém(l)ngz(l)nfn—17z+17(l)
expli(Usip1 + Vaipa + erp)] + 6,(0)
oni(t ) )
j(,;f_l = _Mz—jp,pr”?(l) + 9127(1)
6I|317§12 _ ) ) d3g] d3gz
o = _M3—117«17n57(l) — K (27_[:)3 (27'[) {npl( )n 172(l)n17—171+172(l)

expli(Uasp + Vasp1 + e3p2)]
+ T'lt—lm(l)n}?z(l)n;l—172+17(l)
expli(Unp1 + Vizpz + eap)]} + 65(0)
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ona(t S
S — b, i) + 600 27)
6I|517§12 . ) ) d3g] d3gz
o —MS_JI,,I,T]{,(Z) — K 2n) 2n)’ {T'lgpl(l)n;z(l)ngl—172+17(l)
expli(Uap1 + Vazp2 + es3p)]
+ MM (DM —p14pa(D) expliUsip + Vaipr + eip2)ly + (1)
on’(s o
S — Mg + 6500

Similarly we have for the transposed fields

ol (1) . )
ot = _n't/—p(t)Mg,—ﬂ + et—lr’(t)
—M 2 ) — i i —Ql—ds —&ds t t
o _nf'(t)Mﬁ—p - K on) (2n) {ﬂ—lm(l)ﬂfm(l)n‘p‘l—p+m(l)
exp[i(U12p1 + V12p +e.. )]
+ M (DM (ONG =y —p(D) expli(Usipa + espy + eip)]} + 62,()
o’ (¢ . )
S~ o, + 60,0 (28)
o _ dp & t
o T TMOM = K| s M (On7 (D)
exp[i(U12p2 + e1p1 +e.. )]
+ N (N (M1 —ppa(D) expli(Unspr + Vasp + espa)l} + 02,(1)
o’ (¢ . )
_Tlgtil = _n't/—p(t)Mﬁ,—ﬂ + et—Sp(I)
Mo _ dp dp t
ot - _nﬁ’(t)Mgi—ﬂ - K (275)3 (275)3 {nzm(t)nﬁz(t)nfpﬂl—ﬂz(t)

exp[i(U23p2 + erpi1 + .. )]

+ N2 (ML (DN —p14p2(D) expli(Usip1 + Vaip + erpa)]} + 69,(0)

This can be rewritten in the form
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() _ 3 _111_ d’py
or ML, i) = 2K Z on) (2m) O
X T]},T1(t)n—1,2(t)n1,_1,1+1,2(1)

expli(Urrp + errVirpy + elp2)] + 0)(1) (29)

where g; is the usual antisymmetric tensor, the index i’ is defined as i’ =
(i + 1)/2, and

=00 =31 — du)(1 — di)(1 — 8i)(1 — 0)(1 — du)(1 — i)

In order to illustrate the possibilities of the approach developed here,
we can solve the preceding equations in a kind of Hartreestype approximation.
This can be made by replacing

n171(l)n Pz(l )npz(lﬂ) <T]1,1(Z)T'|—1,2(l )>9npz(lﬂ) - <T'|1,2(Z‘"T'|') 172(1 )>9n171(l)

where the mean values are determined at the zero order of perturbation. Then
the Langevin equations are written

oni(z S
—‘};fl = —MY,,mj(1) — K[1/2 exp(iUnp)ny(1) — 2 exp(ier p)(0)
+ 172 exp(iesp)ns(t)] + . . .]
ona() S
o = ML + 60
m _ 3j j . 6 . 4
o = —MZ, ny(t) — K[1/2 exp(iUx p)ny (1) — 2 exp(ie2p)MN,(2)
+ 172 exp(iei p)np(£)] + . . .]
ona(0) S
o = ~MLmio) + 60 (30)
ﬁlﬁﬁl 5j j . 5 . 6
o - MEemi(0) — K2 exp(iUsip)a(n) — 2 expliesp)np(1)
+ 1/2 exp(ieap)np(D] + .. ]
oms(s) S
o =M%, i) + 650

and for the transposed equations we have
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on'L() , 4
5, = TL(OMp—p + 0%,
om2,(0) o
o = TWOM—, = K2 exp(iUsp=,(1) — 2 explie p)n,(1)
+ 172 exp(ieip)n' .. ]
R () , 4
5, = TLOMS-, + 65() (31)
o, , 4
o = TWOMy = K2 exp(iUip=,(1) = 2 expliep)n=y(1)
+ 1/2 exp(ieap) . . ]
om=,(0) , 4
or L, (M}, + 65(1)
o’ (¢ , 4
_nglj_) = —nJ(OM} -, — K[1/2 exp(iUsp)nZ,(1) — 2 exp(iesp)nZy(1)

+ 1/2 exp(iesp) . . .]

After introduction of kernels as in the preceding section, we find

ony(?) . ) .
By = —=NZ, myp(0) + (1)
on' (i ) . :
S N, + G (32)
where
0 —A —a¥2 —Cy2  —a¥l2  —Biy2 \
] 0 12 —a2 12 —al2
N at2 -B2 0 —4  —at2 —Ci2
N=1 12 an ] 0 12 —a2
ai"/2 _C3/2 ai"/2 _32/2 0 _A3
12 w2 12 an ] 0
and /

A; = [1 + 2 exp(ie;p)]

Bi = [1 — exp(ieip)]
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Ci = [1 — exp(ieUjp)]

with no summation on the indices.
The correlation function of the noise is now

GOy = 28(t = )N DLy,

In this kind of Hartree approximation the correlation functions can be calcw
lated in the usual way:

Mm%y = tim myem”( e = (VL (33)

and we can finally write
3

A d S - s
(im#) =2 J—”—(zn)3 explip(r = IV, (34)

The expression for the matrix N~' can be easily performed, but the result is
too long and not of primary interest.

Finally, we insist that this kind of Hartree approximation is made not
from a saddle point equation, but from an exact equation; this is the main
point of this calculation.

5. CONCLUSION

The aim of this work is not to exhibit fundamentally new results, except
for the kind of Hartree approximation, but only to show how stochastic
quantization offers a frame for the study of statistical systems. We have also
introduced some simplifications of the formalism. Under this form one can
apply the variational approach developed in our preceding papers®” to the
study of more complicated systems such as the two>dimensional Ising model
with an external magnetic field or three>dimensional Ising model. More
generally, we now have a new exact stochastic equation for the Ising model
at our disposal, a result which is not trivial particularly in three dimensions,
and which can open new perspectives in the study of this type of model.
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