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Stochastic Quantization Approach for the
Ising Model
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The Ising model is studied in the fermionic formulation of the stochastic
quantization. An exact stochastic equation is given for D 5 2 and 3 and in a
Hartree approximation a method is developed for treating the two-point
correlation functions.

1. INTRODUCTION

The stochastic quantization method of Parisi and Wu(1) provides a novel

and interesting connection between Euclidean quantum field theory and classi-

cal statistical mechanics. The application of this formalism to theories con-

taining fermionic fields has been treated using Grassmann variables developed

by Berezin.(2)

The fact is that the Ising model, one of the few nontrivial integrable
models of statistical physics, can also be interpreted in terms of Grassmann

variables.(3) The most important aspect of this approach is that all Grassmann

correlation functions may be easily calculated in two dimensions, a result

which is impracticable with spin variables. We have at our disposition two

types of variables: spin variables, which have a simple physical interpretation,

but are very difficult to work with mathematically, and Grassmann variables,

which do not have as a simple physical interpretation, but are easily to use.

Here we apply the stochastic quantization method to this model. In

Section 2 we briefly review the fermionic formalism of the stochastic quanti-

zation and the two-dimensional Ising model explained in Grassmann vari-

ables. Then we treat and calculate all the correlation functions of this model
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in Section 3 for two dimensions, and in Section 4 for three dimensions in a

kind of Hartree approximation.

2. BASIC FORMALISM

2.1. Stochastic Quantization

The basic idea of stochastic quantization is to consider the Euclidean

path integral measure as a stationary distribution of a stochastic process in

an extra variable, the fictitious time t. The diffusion toward equilibrium in
(d 1 1) dimensions is described for the fermionic theories through two

Langevin equations:

- c a (x, t)

- t
5 2

d SE[ c , c ]

d c a [x, t]
1 u a (x, t)

- c a (x, t)

- t
5

d SE[ c , c ]

d c a [x, t]
1 u a (x, t) (1)

where SE[ c , c ] stands for the action, which depends on the fermionic fields
c and c .

Working in Euclidean space, fields have to be treated as independent

Grassmann variables. Then stochastic expectation values of the Gaussian

noise are defined by

^ u & u 5 ^ u & 5 0

^ u a (x, t) u b (x8, t8) & u 5 2 d a b d D(x 2 x8) d (t 2 t8) (2)

and similarly for higher n-point functions, taking into account the anticommu-

tating nature of the noise fields u (x, t) and u (x, t).
The first important characteristic of the stochastic quantization is that

we can start from the ª exactº equation of motion itself, while the conventional

quantization procedures, canonical quantization and Feynmann path integral

methods, cannot be applied to any dynamical system which has no Hamilto-

nian or Lagrangian.

2.2. Two-Dimensional Ising Model

It is well known (6) that for a large number of statistical mechanical

systems which have a graphical interpretation, the partition function has a
representation in terms of anticommutative variables. The two-dimensional

Ising model has such an interpretation where the sum is over closed nonover-

lapping but intersecting polygonal curves. This is obtained by drawing curves

separating the region of up spin from down spin.
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After calculation we obtain in the momentum space(4,5)

Z 5 cosh( b J )2N # D h p D h t
2 p exp(SE[ h , h t]) (3)

which is expressed by means of 4-component Grassmann variables h p and

h 2 p with the definition

h p 5 1
( h V)t

2 p

( h V)p

( h H)t
2 p

( h H)p 2
where the four components are introduced at each site of the reciprocal lattice,
and can be graphically represented by

p j

( h H)t
2 p

j p

( h H)p

- p

( h V)t
2 p

- p

( h V)p

The functional action is given by

SE[ h , h t] 5 #
p

2 p

d 2p

(2 p )2 h t
2 pD 2 p,p h p (4)

where

D 2 p,p 5 1
0 a 1 1

2 a * 0 2 1 1

2 1 1 0 b
2 1 2 1 2 b * 0 2 (5)

with

a 5 1 1 K exp(ipx)

b 5 1 1 K exp( 2 ipx)

K 5 tanh( b J )

A straightforward calculation permits us to reobtain the famous Onsager

result for the free energy.

3. TWO-DIMENSIONAL ISING MODEL IN STOCHASTIC
QUANTIZATION

From the preceding action we can write the following Langevin

equations:
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- h i
p(t)

- t
5 2

1

2
D ij

2 p,p h j
p(t) 1 u i

p(t)

- h ti
2 p(t)

- t
5 2

1

2
h tj

2 p(t)D
ij
p, 2 p 1 u ti

2 p(t) (6)

with

^ u i
p(t) u tj

2 p8(t8) & u 5 2 d ij d 2( p 2 p8) d (t 2 t8) (7)

The D matrix can be diagonalized as

Dd
2 p,p 5 1

i l 0 0 0

0 2 i l 0 0

0 0 i l 8 0

0 0 0 2 i l 8 2
where

l 5

! 2 1 (1 1 K 2) 1 K(cos( px) 1 cos( py)) 2 ! 4 1 K(cos( px) 1 cos( py))
2 1 4K 2 2 8

l 8 5

! 2 1 (1 1 K 2) 1 K(cos( px) 1 cos( py)) 1 ! 4 1 K(cos( px) 1 cos( py))
2 1 4K 2 2 8

But in the t ® ` limit, we can easily see that we do not recover the usual

Green functions. This problem is well known in stochastic quantization.(7)

Basically this evidences the fact that there exists no classical analogue of
fermion fields. The consequence here is the appearance of operators which

are not positive definite. The idea to solve this problem is to choose a

bosonized version of the two Langevin equations by the introduction of

kernels.(7)

In view to obtaining more simplified Langevin equations, we take the

following kernels:

Kp 5 (Dd) 2 1
2 p,p

Then we have

- h i
p(t)

- t
5 2

1

2
h i

p(t) 1 u i
p(t)

- h ti
2 p(t)

- t
5 2

1

2
h ti

2 p(t) 1 u ti
2 p(t) (8)

and after a simple matrix manipulation
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^ u i
p u tj

2 p & 5 lim
t ® `

^ u i
p(t) u tj

2 p(t) & u 5 (Dd) 2 1
2 p,p (9)

In position space we then obtain

^ h i
r h tj

r8 & 5 # d 2p

(2 p )2 (D 2 1)ij
2 p,p exp(ip(r 2 r8)) (10)

where

(D 2 1) 2 p,p 5

1
b 2 b * b 1 b * 2 a b b * 2 2 1 a b * 2 2 1 a b

2 b 2 b * 1 a b b * 2 b 1 b * 2 2 a * b * 2 2 2 a * b
2 2 a * b 2 2 1 a b 2 a 1 a * 2 a 2 a * 2 a a * b
2 2 a * b * 2 2 a b * 2 a 2 a * 1 a a * b * a 2 a * 2

We can give the 12 possible correlation functions founded by Samuel(4) in

another context, for instance, we have

^ ( h V)r( h V)t
r8 & 5 # d 2p

(2 p )2 exp(ip(r 2 r8)) 1 a 1 a * 2 a a * b *

det D 2
^ ( h H)r( h H)t

r8 & 5 # d 2p

(2 p )2 exp(ip(r 2 r8)) 1 b 1 b * 2 a * b b *

det D 2
^ ( h V)r( h H)t

r8 & 5 # d 2p

(2 p )2 exp(ip(r 2 r8)) 1 2 2 2 a * b *

det D 2
^ ( h H)r( h V)t

r8 & 5 # d 2p

(2 p )2 exp(ip(r 2 r8)) 1 2 2 2 a * b *

det D 2 (11)

with

det D 5 (1 1 K 2)2 2 2K(1 2 K 2)(cos( px) 1 cos( py))

4. A KIND OF HARTREE APPROXIMATION FOR THE THREE-
DIMENSIONAL ISING MODEL IN STOCHASTIC
QUANTIZATION

Here we concentrate on the three-dimensional Ising model. Its dual is
the Z2 three-dimensional gauge model with similar variables assigned to links

and interacting on elementary plaquettes. The fermionization of this theory

was also realized by Samuel(4) and Itzykson and Drouffe, (5) who generalized

the two-dimensional formalism in the following partition function:
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Z 5 cosh( b J )3N # &
x

d h 1
xd h 1 1

x d h 2
xd h 1 2

x d h 3
xd h 1 3

x exp(S) (12)

where

S 5 Splaquettes 1 Scorners 1 Svertex (13)

with

Splaquettes 5 K o
x

o
i , j

i Þ j Þ k

v ijk h
1 j
x 1 vij h

j
x 1 uij h

1 k
x 1 vik h

k
x 1 uik (14)

Scorners 5 o
x

o
i Þ j

{ h 1 i
x 1 uij h

j
x 1 uij 1 h i

x 1 uik h
1 j
x 1 uik 1 h 1 i

x 1 uij h
1 j
x 1 uij 1 h i

x 1 uij h
i
x 1 uij}

(15)

Svertex 5 o
x

o
i Þ j

h i
x 1 uij h

1 i
x 1 uij (16)

with

v ijk 5 1 for i Þ j Þ k

uij 5
1

2
(ei 1 ej)

vij 5
1

2
(ei 2 ej)

where ei is the unitary vector in the i direction.

Since the plaquette terms are quartic, the partition function is no longer

integrable and we need to develop approximation schemes. First we attend

to the quadratic terms, whose contribution to the partition function is Gaussian.

4.1. The Quadratic Terms

These terms can be easily rewritten in the form

Scorners 1 Svertex 5 # d 3p

(2 p )3 o
6

i, j 5 1

h ti
2 p M ij

2 p,p h j
p (17)

where h ti
2 p is the transpose of h i

p, given by
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h i
p 5 1

h 1 1
2 p

h 1
p

h 1 2
2 p

h 2
p

h 1 3
2 p

h 3
p 2

The M matrix is given by

M ij
2 p,p 5

1

2 1
0 2 2 2 a*3 2 1 2 a*2 2 1

2 0 1 2 a3 1 2 a2

a*3 2 1 0 2 2 2 a*1 2 1

1 a3 2 0 1 2 a1

a* 2 2 1 a*1 2 1 0 2 2

1 a2 1 a1 2 0 2
with aj 5 e jkl exp(2ipukl), where there is no summation on the indices.

In first approximation let us suppress the quartic terms (that is, let us
take K 5 0). The Langevin equations associated with the preceding action

is then

- h i
p(t)

- t
5 2 M ij

2 p,p h j
p(t) 1 u i

p(t)

- h ti
p(t)

- t
5 2 h tj

p(t)M
ji
p, 2 p 1 u i

p(t) (18)

The M matrix is antisymmetric and its eigenvalues are pure imaginary

complex conjugate numbers. Then in the t ® ` limit, we recover the same

problem as in two dimensions. As before, this difficulty is avoided by the
introduction of a kernel:

5
- h i

p(t)

- t
5 2 h i

p(t) 1 u i
p(t)

- h ti
p(t)

- t
5 2 h ti

p(t) 1 u i
p(t)

with now
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^ u i
p(t) u tj

2 p(t8) & u 5 2(M 2 1)ij
2 p,p d (t 2 t8)

where

M 2 1 5

1

2D 1
0 2 2 E3 (1 2 a*1 a2) 2 E2 (1 1 a*1 a3)

2 0 2 (1 2 ai a*2 ) E *3 2 (1 1 a1a*3 ) 2 E *2

2 E3 1 2 a1a*2 0 2 2 E1 1 2 a*2 a3

2 (1 2 a*1 a2) 2 E *3 2 0 2 (1 2 a2a*3 ) E *1

E2 1 1 a1a*3 2 E1 1 2 a2a*3 0 2 2

2 (1 1 a*1 a3) E *2 2 (1 2 a*2 a3) 2 E *1 2 0 2
and

E1 5 2a1 2 a2 1 a3

E2 5 a1 2 2a2 1 a3

E3 5 a1 2 a2 1 2a3

D 5 a*1 E1 2 a*2 E2 1 a*3 E3 2 4

4.2. The Quartic Term

In momentum space the action has a more complicated form. We can

write it as

Splaquettes 5 K # d 3p1

(2 p )3

d 3p2

(2 p )3

d 3p3

(2 p )3

3 { c 1 1
2 p1(t) c

1
p2(t) c

1 2
2 p3(t) c

2
p1 2 p2 1 p3(t) exp[i(U12p1 1 V12p2 1 e2p3)]

(20)

1 c 1 2
2 p1(t) c

2
p2(t) c

1 3
2 p3(t) c

3
p1 2 p2 1 p3(t) exp[i(U23p1 1 V23p2 1 e3p3)]

(21)

1 c 1 3
2 p1(t) c

3
p2(t) c

1 1
2 p3(t) c

1
p1 2 p2 1 p3(t) exp[i(U31p1 1 V31p2 1 e1p3)]}

(22)

Introducing the vector h i
p of the last section, we obtain

Splaquettes 5 K # d 3p1

(2 p )3

d 3p2

(2 p )3

d 3p3

(2 p )3

3 { h t1
2 p1(t) h

2
p2(t) h

t3
2 p3(t) h

4
p1 2 p2 1 p3(t) (23)
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exp[i(U12 p1 1 V12 p2 1 e2 p3)]

1 h t3
2 p1(t) h

4
p2 (t) h t5

2 p3(t) h
6
p1 2 p2 1 p3(t)

exp[i(U12 p1 1 V12 p2 1 e2 p3)] (24)

1 h t5
2 p1(t) h

6
p2(t) h

t1
2 p3(t) h

2
p1 2 p2 1 p3(t)

exp[i(U12 p1 1 V12 p2 1 e2 p3)]} (25)

This expression can be written in a more compact form as

Splaquettes 5 K # d 3p1

(2 p )3

d 3p2

(2 p )3

d 3p3

(2 p )3

3 o
k, l P (12,23,31)

h t2k 1 1
2 p1 (t) h 2k

p2(t) h
t2l 2 1
2 p3 (t) h 2l

p1 2 p2 1 p3(t)

exp[i(U 8kl p1 1 V 8kl p2 1 e8l p3)] (26)

where

e81 5 e1; e83 5 e2; e85 5 e3

U 8kl 5
e8k 1 e8l

2
; V 8kl 5

e8k 2 e8l

2

Finally we obtain for the Langevin equations

- h 1
p(t)

- t
5 2 M 1j

2 p,p h j
p(t) 2 K # d 3p1

(2 p )3

d 3p2

(2 p )3 { h 2
p1(t) h

t3
2 p2(t) h

4
p 2 p1 1 p2(t)

exp[i(U12 p 1 V12 p1 1 e2 p2)]

1 h t5
2 p1(t) h

6
p2(t) h

2
p1 2 p2 1 p(t)

exp[i(U31 p1 1 V31 p2 1 e1 p)] 1 u 1
p(t)

- h 2
p(t)

- t
5 2 M 2j

2 p,p h j
p(t) 1 u 2

p(t)

- h 3
p(t)

- t
5 2 M 3j

2 p,p h j
p(t) 2 K # d 3p1

(2 p )3

d 3p2

(2 p )3 { h 4
p1(t) h

t5
2 p2(t) h

6
p 2 p1 1 p2(t)

exp[i(U23 p 1 V23 p1 1 e3 p2)]

1 h t1
2 p1(t) h

2
p2(t) h

4
p1 2 p2 1 p(t)

exp[i(U12 p1 1 V12 p2 1 e2 p)]} 1 u 3
p(t)
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- h 4
p(t)

- t
5 2 M 4j

2 p,p h j
p(t) 1 u 4

p(t) (27)

- h 5
p(t)

- t
5 2 M 5j

2 p,p h j
p(t) 2 K # d 3p1

(2 p )3

d 3p2

(2 p )3 { h t3
2 p1(t) h

4
p2(t) h

6
p1 2 p2 1 p(t)

exp[i(U23 p1 1 V23 p2 1 e3 p)]

1 h 6
p1(t) h

t1
2 p2(t) h

2
p 2 p1 1 p2(t) exp[i(U31 p 1 V31 p1 1 e1 p2)]} 1 u 5

p(t)

- h 6
p(t)

- t
5 2 M 6j

p, 2 p h j
p(t) 1 u 6

p(t)

Similarly we have for the transposed fields

- h t1
2 p(t)

- t
5 2 h tj

2 p(t)M
j1
p, 2 p 1 u t1

2 p(t)

- h t2
2 p(t)

- t
5 2 h j

p(t)M
j2
p, 2 p 2 K # d 3p1

(2 p )3

d 3p2

(2 p )3 { h t1
2 p1(t) h

t3
2 p2(t) h

4
p1 2 p 1 p2(t)

exp[i(U12 p1 1 V12 p 1 e . . .)]

1 h t5
2 p1(t) h

6
p2(t) h

t1
p1 2 p2 2 p(t) exp[i(U31 p2 1 e3 p1 1 e1 p)]} 1 u t2

2 p(t)

- h t3
2 p(t)

- t
5 2 h tj

2 p(t)M
j3
p, 2 p 1 u t3

2 p(t) (28)

- h t4
2 p(t)

- t
5 2 h j

p(t)M
j4
p, 2 p 2 K # d 3p1

(2 p )3

d 3p2

(2 p )3 { h t1
2 p1(t) h

2
p2(t) h

t3
p1 2 p2 2 p(t)

exp[i(U12 p2 1 e1 p1 1 e . . .)]

1 h t3
2 p1(t) h

t5
2 p2(t) h

6
p1 2 p 1 p2(t) exp[i(U23 p1 1 V23 p 1 e3 p2)]} 1 u t4

2 p(t)

- h t5
2 p(t)

- t
5 2 h tj

2 p(t)M
j5
p, 2 p 1 u t5

2 p(t)

- h t6
2 p(t)

- t
5 2 h j

p(t)M
j6
p, 2 p 2 K # d 3p1

(2 p )3

d 3p2

(2 p )3 { h t3
2 p1(t) h

4
p2(t) h

t5
2 p 1 p1 2 p2(t)

exp[i(U23 p2 1 e2 p1 1 . . .)]

1 h t5
2 p1(t) h

t1
2 p2(t) h

2
p 2 p1 1 p2(t) exp[i(U31 p1 1 V31 p 1 e1 p2)]} 1 u t6

2 p(t)

This can be rewritten in the form
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- h i
p(t)

- t
5 2 M ij

2 p,p h j
p(t) 2 2K o

6

l 5 1 # d 3p1

(2 p )3

d 3p2

(2 p )3 d 8il

3 h i 1 1
p1 (t) h tl

2 p2(t) h
l 1 1
p 2 p1 1 p2(t)

exp[i(Ui8l8p 1 e i8l8V 8l8l8p1 1 e8l8p2)] 1 u i
p(t) (29)

where e ij is the usual antisymmetric tensor, the index i8 is defined as i8 5
(i 1 1)/2, and

d 8il 5 (1 2 d l2)(1 2 d l4)(1 2 d l6)(1 2 d li)(1 2 d i2)(1 2 d i4)(1 2 d i6)

In order to illustrate the possibilities of the approach developed here,

we can solve the preceding equations in a kind of Hartree-type approximation.

This can be made by replacing

h i
p1(t) h

tl
2 P2(t8) h

k
p3(t9) j ^ h i

p1(t) h
tl
2 p2(t8) & u h k

p3(t9) 2 ^ h k
p3(t9 h

t)l
2 p2(t8) & u h i

p1(t)

where the mean values are determined at the zero order of perturbation. Then

the Langevin equations are written

- h 1
p(t)

- t
5 2 M 1j

2 p,p h j
p(t) 2 K[1/2 exp(iU12 p) h 4

p(t) 2 2 exp(ie1 p) h 2
p(t)

1 1/2 exp(ie3 p) h 6
p(t)] 1 . . .]

- h 2
p(t)

- t
5 2 M 2j

2 p,p h j
p(t) 1 u 2

p(t)

- h 3
p(t)

- t
5 2 M 3j

2 p,p h j
p(t) 2 K[1/2 exp(iU23 p) h 6

p(t) 2 2 exp(ie2 p) h 4
p(t)

1 1/2 exp(ie1 p) h 2
p(t)] 1 . . .]

- h 4
p(t)

- t
5 2 M 4j

2 p,p h j
p(t) 1 u 4

p(t) (30)

- h 5
p(t)

- t
5 2 M 5j

2 p,p h j
p(t) 2 K[1/2 exp(iU31 p) h 5

p(t) 2 2 exp(ie3 p) h 6
p(t)

1 1/2 exp(ie2 p) h 4
p(t)] 1 . . .]

- h 6
p(t)

- t
5 2 M 6j

2 p,p h j
p(t) 1 u 6

p(t)

and for the transposed equations we have
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- h t1
2 p(t)

- t
5 2 h tj

2 p(t)M
j1
p, 2 p 1 u t1

2 p(t)

- h t2
2 p(t)

- t
5 2 h tj

p(t)M
j2
p, 2 p 2 K[1/2 exp(iU31 p) h t5

2 p(t) 2 2 exp(ie1 p) h t1
2 p(t)

1 1/2 exp(ie1 p) h t . . .]

- h t3
2 p(t)

- t
5 2 h tj

2 p(t)M
j3
jp, 2 p 1 u t3

p (t) (31)

- h t4
2 p(t)

- t
5 2 h tj

p(t)M
j4
p, 2 p 2 K[1/2 exp(iU12 p) h t1

2 p(t) 2 2 exp(ie2 p) h t3
2 p(t)

1 1/2 exp(ie2 p) . . .]

- h t5
2 p(t)

- t
5 2 h tj

2 p(t)M
j5
p, 2 p 1 u t5

p (t)

- h t6
2 p(t)

- t
5 2 h tj

p(t)M
j6
p, 2 p 2 K[1/2 exp(iU23 p) h t5

2 p(t) 2 2 exp(ie3 p) h t5
2 p(t)

1 1/2 exp(ie3 p) . . .]

After introduction of kernels as in the preceding section, we find

- h i
p(t)

- t
5 2 N ij

2 p,p h j
p(t) 1 z i

p(t)

- h ti
2 p(t)

- t
5 2 h tj

2 p(t)N
ji
p, 2 p 1 z ti

p(t) (32)

where

N 5 1
0 2 A1 2 a*2 /2 2 C2/2 2 a*2 /2 2 B3/2

1 0 1/2 2 a3/2 1/2 2 a2/2

a*3 /2 2 B1/2 0 2 A2 2 a*1 /2 2 C1/2

1/2 a3/2 1 0 1/2 2 a1/2

a*2 /2 2 C3/2 a*1 /2 2 B2/2 0 2 A3

1/2 a2/2 1/2 a1/2 1 0 2
and

Ai 5 [1 1 2 exp(iei p)]

Bi 5 [1 2 exp(iei p)]
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Ci 5 [1 2 exp(i e ijkUjkp)]

with no summation on the indices.
The correlation function of the noise is now

^ z i
p(t) z tj

2 p(t8) & z 5 2 d (t 2 t8)(N 2 1)ij
2 p,p

In this kind of Hartree approximation the correlation functions can be calcu-

lated in the usual way:

^ h i
p h tj

2 p & 5 lim
tandt8 ® `

^ h i
p(t) h tj

2 p(t8) & z 5 (N 2 1)ij
2 p8p (33)

and we can finally write

^ h i-r h tj-r & 5 2 # d 3p

(2 p )3 exp[ip(
-
r 2

-
r8 )](N 2 1)ij

2 p,p (34)

The expression for the matrix N 2 1 can be easily performed, but the result is

too long and not of primary interest.

Finally, we insist that this kind of Hartree approximation is made not

from a saddle point equation, but from an exact equation; this is the main
point of this calculation.

5. CONCLUSION

The aim of this work is not to exhibit fundamentally new results, except

for the kind of Hartree approximation, but only to show how stochastic

quantization offers a frame for the study of statistical systems. We have also

introduced some simplifications of the formalism. Under this form one can

apply the variational approach developed in our preceding papers(8,9) to the

study of more complicated systems such as the two-dimensional Ising model
with an external magnetic field or three-dimensional Ising model. More

generally, we now have a new exact stochastic equation for the Ising model

at our disposal, a result which is not trivial particularly in three dimensions,

and which can open new perspectives in the study of this type of model.
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